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Fire is a major cause of tree injury and mortality worldwide, yet our current understanding of fire effects is largely based
on ocular estimates of stem charring and foliage discoloration, which are error prone and provide little information on
underlying tree function. Accurate quantification of physiological performance is a research and forest management need,
given that declining performance could help identify mechanisms of—and serve as an early warning sign for—mortality.
Many previous efforts have been hampered by the inability to quantify the heat flux that a tree experiences during a
fire, given its highly variable nature in space and time. In this study, we used a dose–response approach to elucidate fire
impacts by subjecting Pinus monticola var. minima Lemmon and Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.)
Franco saplings to surface fires of varying intensity doses and measuring short-term post-fire physiological performance
in photosynthetic rate and chlorophyll fluorescence. We also evaluated the ability of spectral reflectance indices to
quantify change in physiological performance at the individual tree crown and stand scales. Although physiological
performance in both P. monticola and P. menziesii declined with increasing fire intensity, P. monticola maintained a
greater photosynthetic rate and higher chlorophyll fluorescence at higher doses, for longer after the fire. Pinus monticola
also had complete survival at lower fire intensity doses, whereas P. menziesii had some mortality at all doses, implying
higher fire resistance for P. monticola at this life stage. Generally, individual-scale spectral indices were more accurate
at quantifying physiological performance than those acquired at the stand-scale. The Photochemical Reflectance Index
outperformed other indices at quantifying photosynthesis and chlorophyll fluorescence, highlighting its potential use to
quantify crown scale physiological performance. Spectral indices that incorporated near-infrared and shortwave infrared
reflectance, such as the Normalized Burn Ratio, were accurate at characterizing stand-scale mortality. The results from
this study were included in a conifer cross-comparison using physiology and mortality data from other dose–response
studies. The comparison highlights the close evolutionary relationship between fire and species within the Pinus genus,
assessed to date, given the high survivorship of Pinus species at lower fire intensities versus other conifers.
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Introduction

Fire is one of the major causes of tree injury and mortality
in many areas of the world, including western United States
forests (Berner et al. 2017, Huo et al. 2019). Heat-induced
damage that trees incur during fires can result in significant
changes in physiological function, including reduced photosyn-
thesis, phloem dysfunction, and mortality of the cambium and
phloem (Smith et al. 2017, Bär et al. 2019, Partelli-Feltrin et
al. 2021, 2023). These tree-level impacts, when aggregated to
the stand and forest scale, can substantially alter the ecosystem
goods and services that forests provide, including hydrologic
processes, food and forest products, and protection of soil and
biodiversity, among many others (Bonan 2008, Smith et al.
2014, Oswalt et al. 2019). With a warming climate, fire seasons
have lengthened (Jolly et al. 2015), and increased fire activity
is projected for western United States ecosystems (Abatzoglou
et al. 2021, Anderegg et al. 2022). Along with projected
increases in wildfire activity, there are growing calls for more
prescribed fires to be implemented in forest management plans
to reduce hazardous fuel loads (Kolden 2019, Schultz et al.
2019, Hiers et al. 2020, Prichard et al. 2021). Given the
projected fiery future, an improved understanding of how tree
physiology and mortality are affected by fire is essential for the
sustainable management of these forest ecosystems (Shuman
et al. 2022).

Fire-induced impacts to tree physiology are a direct conse-
quence of heat flux to the tree crown, stem and roots (Michaletz
and Johnson 2007, Bär et al. 2019). In tree stems, tissues that
are closer to the bark surface and thus closer to the source
of heat (e.g., cambium, phloem) receive higher doses of heat
(Butler and Dickinson 2010), which can result in cambium
necrosis (Jones et al. 2006) and phloem dysfunction and death
(Partelli-Feltrin et al. 2022). Xylem tissues in tree stems are
more insulated from heat flux, and studies that utilize actual
fires have found that even lethal doses of heat do not affect,
or have little effect on, xylem hydraulic function (Battipaglia
et al. 2016, Partelli-Feltrin et al. 2021, 2022). This is con-
trary to experiments that utilize fire proxies (e.g., ovens, hot
water baths), where xylem hydraulic function in excised branch
segments has been significantly reduced by heat-induced xylem
embolism (Michaletz et al. 2012, West et al. 2016, Bär et al.
2018). Beyond tree stems, damage to foliage in tree crowns is
of particular importance as this can impair carbon acquisition
and lead to reduced non-structural carbohydrate stores needed
for growth, maintenance and defense (Smith et al. 2017, Hood
et al. 2018a, Sparks et al. 2018, Partelli-Feltrin et al. 2020,
2022, Varner et al. 2021). Foliage exposed to high doses of
heat can experience immediate tissue necrosis or be directly
combusted (Michaletz and Johnson 2006). Hot gasses from
fire plumes can directly impact crowns, leading to bud damage,
reduced growth and mortality (Bison et al. 2022). Lower doses
of heat to foliage can damage the photosynthetic pathway and

reduce carbon acquisition (Smith et al. 2017, Partelli-Feltrin
et al. 2020). In some cases, undamaged foliage on trees with
large foliage loss can have greater rates of photosynthesis, likely
due to improved water availability for remaining leaves (Wallin
et al. 2003, Sayer et al. 2020).

A major challenge of assessing fire effects on tree physio-
logical performance is the heterogenous nature of fire behavior,
which results in a heat flux to tree components that is highly
variable in space and time (Sparks et al. 2017, O’Brien et al.
2018). To address this issue, many experimental studies have
utilized fire proxies, such as convection ovens (West et al.
2016), radiant heaters (Jiménez et al. 2017) and hot water
baths (Michaletz et al. 2012, West et al. 2016, Bär et al. 2018).
However, the ability of these methods to produce heat fluxes
similar to those in actual fires has been questioned (Varner et al.
2021), given that no heat flux comparison studies have been
done. Other studies have used a toxicological dose–response
approach for characterizing fire intensity effects on tree physiol-
ogy and mortality (e.g., Smith et al. 2016, 2017, Sparks et al.
2016, 2017, 2018, Steady et al. 2019, Partelli-Feltrin et al.
2020, 2021, 2022), where fire intensity represents the energy
released (i.e., heat flux) during the various combustion phases
of fire (Keeley 2009). Using this dose–response approach,
trees are subjected to actual fires with a known fire intensity
(dose) reported as the total radiative heat flux incident on a tree
or fire radiative energy (FRE, units: MJ m−2). Tree physiological
impacts (responses) are assessed pre- and post-fire. The use
of consistent and repeatable doses of heat from actual fires
provides a promising approach to assessing fire effects (Hood
et al. 2018a, O’Brien et al. 2018); however, large knowledge
gaps remain, as only a few tree species of limited size have
been assessed using this approach.

Quantifying the physiological performance of fire-affected
tree foliage is a forest management research need (Smith et al.
2016, Varner et al. 2021), given that reduced performance
could serve as an early indicator of tree death (Sperry and
Love 2015, Hood et al. 2018a). However, most assessments of
tree crowns after fire are limited to subjective ocular estimations
of tree crown damage, termed ‘crown scorch’, which provide
limited insight into the physiological status of the tree crown
(Smith et al. 2016, Sparks et al. 2016, Varner et al. 2021).
Instead, assessments that provide information about the state of
photosynthetic machinery and carbon assimilation in tree foliage
may provide mechanistic and scalable metrics, given decreased
photosynthetic activity for extended periods can reduce non-
structural carbon reserves and lead to carbon starvation and
death (McDowell et al. 2011, Bär et al. 2019, Partelli-Feltrin
et al. 2022). Prior studies have shown that greater heat-induced
damage to conifer saplings results in lower stomatal conduc-
tance, net photosynthesis and chlorophyll fluorescence, and in
greater mortality (Smith et al. 2017, Steady et al. 2019, Partelli-
Feltrin et al. 2022). Remote sensing of foliar spectral reflectance
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provides an avenue for assessing physiological function and the
water and chemical content of crown foliage (Choudhury 1987,
Gamon et al. 1992, Asner et al. 2015, Gamon et al. 2016);
however, little work has explored the potential of assessing
physiological change in burned trees. For example, Sparks
et al. (2016) observed that spectral indices derived from leaf-
level spectral reflectance accurately characterized photosynthe-
sis and chlorophyll fluorescence in burned Pinus contorta var.
latifolia and Larix occidentalis sapling foliage. It is not known
if these relationships would be accurate at larger scales (e.g.,
stand or landscape scale) due to confounding issues such as
complex tree crown illumination conditions and mixed species
composition within a forest stand (Williams 1991, Asner et al.
2015).

In this study, the overall objective was to assess short-term
effects (weeks to months) of fire on physiological performance
and mortality in Pinus monticola var. minima Lemmon and Pseu-
dotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco
saplings and evaluate whether these effects are detectable
using spectral reflectance indices. Here, we define sapling as
the growth stage following seedlings, where seedlings are
plants dependent on stored seed reserves (Thomas and Winner
2002, Brodersen et al. 2019). Specifically, we tested the
following hypotheses: (H1) increased fire intensity results in
decreased physiological performance and increased mortality in
both species and (H2) changes in physiological performance
and mortality are detectable using leaf-level and stand-level
spectral reflectance indices. To address the overall objective,
saplings were subjected to surface fire treatments of known
intensity (doses) in a controlled laboratory setting, and physio-
logical performance and mortality (responses) were assessed
up to 2 months post-treatment. Photosynthesis, chlorophyll
fluorescence and individual- and sapling stand-level spectral
reflectance were measured before and after fire treatment. Rela-
tionships between fire intensity or spectral reflectance and tree
physiology or mortality metrics were assessed using regression
modeling. Finally, the results from this study were included in
a cross-conifer comparison using physiology and mortality data
from other dose–response studies to further understand how
responses vary across species.

Materials and methods

Ecology

Pinus monticola var. minima (western white pine) is an early seral
species found from British Columbia to California and from the
Pacific coast to western Montana (Burns and Honkala 1990,
Loehman et al. 2011). The species is ecologically important
and an important timber species in the United States (Burns
and Honkala 1990). The mature trees can live over 400 years
and exhibit heights exceeding 60 m and diameter at breast
height of 2.4 m (Griffith 1992, Loehman et al. 2011). Mature
trees exhibit moderate levels of resistance to fire with thick bark

and high crowns (Loehman et al. 2011), but this resistance
decreases as stand density increases (Davis et al. 1980, Burns
and Honkala 1990). Although limited fire ecology data exist on
young trees, saplings are broadly considered sensitive to fire
damage and mortality due to having thin bark (Griffith 1992,
Hood et al. 2018b). The literature is inconsistent regarding
whether foliage flammability and branch structure in mature
trees promote or inhibit crown fires (Burns and Honkala 1990,
Loehman et al. 2011).

Pseudotsuga menziesii var. glauca (Rocky Mountain Douglas-
fir) exists in mountainous regions from central British Columbia
to Mexico and from central Washington to eastern Colorado, and
is an important timber species throughout its range (Steinberg
2002). Although the species is considered shade intolerant in
wet forests, it is categorized as moderately shade tolerant and a
climax species in more arid forests (Burns and Honkala 1990).
Although mature trees exhibit moderate to high levels of fire
resistance through thick insulative bark (Peterson and Arbaugh
1986, Ryan et al. 1988), younger trees are susceptible to fire-
induced damage due to thin bark, closely spaced flammable
needles and resin blisters located in the bark (Fischer and
Bradley 1987, Agee 1993). Norum (1976) observed that
small-stemmed (<10 cm diameter) Rocky Mountain Douglas-
fir are generally killed by prescribed fires and that strong
relationships predictive of mortality could be derived using
diameter and fire intensity. Other studies suggest that injury
and mortality in this species may arise from the fires damaging
the crown (Engber and Varner 2012) and major lateral roots
located in the transition between the organic and mineral soil
layers (Ryan et al. 1988).

Pinus and Pseudotsuga saplings and study treatments

Pinus monticola (n = 35) and P. menziesii saplings (n = 35)
were grown in 9.5-l pots through two growing seasons under
natural light conditions in a climate-controlled greenhouse in
Moscow, Idaho, USA (46.73◦N, 117.0◦W). During this period,
saplings were watered to field capacity daily to minimize water
stress. Immediately prior to fire treatments, average (±SE) root
collar diameters were 1.83 ± 0.04 cm and 2.10 ± 0.05 cm
and mean heights were 0.73 ± 0.27 m and 0.99 ± 0.28 m for
P. monticola and P. menziesii, respectively.

In June of 2021, P. monticola and P. menziesii saplings were
randomly divided into five groups (n = 7): (i) control saplings
that were not burned; (ii) saplings subjected to a surface fire
with FRE of 0.4 MJ m−2; (iii) saplings subjected to a surface fire
with FRE of 0.6 MJ m−2; (iv) saplings subjected to a surface fire
with FRE of 0.8 MJ m−2; and (v) saplings subjected to a surface
fire with FRE of 1 MJ m−2. Fire radiative energy was used as
the dose metric, given that prior studies have shown that pure
fuel beds with the same mass and moisture content produce
consistent and repeatable quantities of FRE (Smith et al. 2013,
2016, Wooster et al. 2021). The specific doses were created by
burning fuelbeds of pure P. monticola needles at <1% moisture
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content. Following Smith et al. (2013, 2017), the following
relationship between fuel load and FRE was used to calculate
the necessary fuel load for each dose group: P. monticola needle
fuel load (kg) = 2.679/FRE. Saplings in each dose group were
inserted into a custom cut concrete board so that the soil surface
of the sapling pot was level with the board. The corresponding
fuel load of dry needles was evenly distributed in a 1 m2

circular area surrounding each sapling and ignited on one side
to produce a surface fire with a uniform flaming front. After the
fire treatment, saplings were watered to field capacity daily. The
experiment was a completely randomized design, and saplings
were rearranged weekly to minimize environmental variation
associated with sapling position.

Photosynthesis and chlorophyll fluorescence measurements

Light-saturated gas exchange measurements were acquired on
five randomly selected saplings in each FRE dose group with a
LI-6800 portable photosynthesis system (LI-COR Biosciences,
Lincoln, NE, USA). Measurements included light-saturated net
photosynthesis (Amax) and stomatal conductance to water vapor
(gs) and were performed with a constant photosynthetic flux of
1500 μmol m−2 s−1 and CO2 level of 400 p.p.m. Measurements
were taken 1 day before the fire treatments, which occurred in
the first week of July, and at 28 days and 56 days after the
fire treatments between 10 a.m. and 12 p.m. The average air
temperature was 33.7 and 31.0 ◦C, and the relative humidity
was 36.3 and 32.8% at 28 and 56 days post-fire, respectively.
Gas exchange measurements were taken on needles that had
survived the fire (i.e., needles with minimal visible damage
or discoloration) in the top one-third of each sapling crown.
Measurements were taken on mature needles that had been
produced in the previous year. If a selected sapling only had
brown needles, no gas exchange measurements were acquired.
Needles were marked to indicate the proportion of the needles
inside the leaf chamber. After gas exchange measurement, each
marked needle group was photographed on a white background
with a measurement scale for reference using an 18-megapixel
Canon Powershot camera (Canon USA, Inc., Melville, NY, USA).
Images were cropped using the needle markings, and total
leaf area (cm2) was calculated using ImageJ software (v.1.53;
developed by W.S. Rasband, US National Institutes of Health,
Bethesda, MD, USA). Leaf area estimates and gas exchange
data were used to calculate net photosynthesis on a leaf
area basis. Relative net photosynthesis was also calculated
as: [((Apostfire − Aprefire)/Aprefire) × 100].

Chlorophyll fluorescence measurements were acquired on all
study trees on the same post-fire days as the gas exchange
measurements, using an OS30p + fluorometer (Opti-Sciences,
Hudson, NH, USA). Measurements were acquired at least 1
h after sunset so that needles could dark adapt. For each
sapling, minimal fluorescence (Fo) was measured, and maximum
fluorescence (Fm) was measured after a short saturation pulse

(3500 μmol m−2 s−1) of red light centered at 660 nm. Maxi-
mum quantum yield of photosystem II (Fv/Fm) was calculated
following Genty et al. (1989):

Fv

Fm
= Fm − Fo

Fm

Spectral reflectance measurements and spectral indices

Spectral reflectance was measured on the same saplings and
sample dates as the gas exchange and chlorophyll fluorescence
measurements, using an ASD FieldSpec Pro spectroradiometer
(Malvern Panalytical Ltd, Malvern, UK). This spectroradiome-
ter collects measurements at wavelengths between 350 and
2500 nm and has a spectral resolution of 3 nm between
350 and 1000 nm and 10 nm between 1000 and 2500 nm.
Individual sapling spectra were acquired in the top one-third
of each sapling. Radiance measurements were calibrated using
a 100% reflective Lambertian Spectralon panel (Labsphere
Inc., North Sutton, NH, USA) before each scan. Three spectral
scans were acquired for each sapling using the mineral probe
attachment to minimize noise due to the absorption of water
vapor in the air. For each scan, the instrument acquired and
averaged 10 spectra to reduce noise.

Spectra of sapling stands were collected by arranging the five
selected saplings in each FRE dose group into synthetic ‘stands’,
which provided a semi-closed canopy (Figure 1). Saplings were
positioned on a spectrally flat, charred concrete board (i.e.,
covered in charcoal residue), which provided a realistic back-
ground for the stand scale spectral scans. Spectral scans were
acquired at 2.31 m above the burn board using the fiber optic
cable with a 25◦ field of view. All stand spectra were acquired
outside between 10 a.m. and 12:00 p.m. so that illumination
conditions were similar between dose groups. Three spectral
scans were acquired for each group, and the saplings were
rotated 90◦ between each scan. Images of each sapling stand
were taken pre- and post-fire at nadir and at the same height as
stapling stand spectra measurements using an 18-megapixel
Canon Powershot camera (Canon USA, Inc., Melville, NY, USA)
(Figure 1). All individual and stand spectra were processed via
linear interpolation to 1 nm resolution, resulting in 2151 spectral
bands, before any further spectral processing was performed.

The spectral reflectance measurements were used to
calculate spectral indices demonstrated to be sensitive to
vegetation physiology and/or live canopy cover (Table 1).
For spectral indices that do not use specific wavelengths,
spectra were converted to band-equivalent reflectance (Trigg
and Flasse 2000, Smith et al. 2005) associated with the
Landsat 8 satellite sensor, given the widespread use of
Landsat 8 to map live vegetation cover and post-fire mortality
(McCarley et al. 2017, Furniss et al. 2020, Tyukavina et al.
2022). The Chlorophyll/Carotenoid Index (CCI)
(Gamon et al. 2016), Photochemical Reflectance Index
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Figure 1. Photos of Pinus monticola (top row) and Pseudotsuga menziesii (bottom row) dose groups taken at nadir 28 days post-fire. Photos are
cropped to the approximate field-of-view of the spectroradiometer.

(PRI) (Gamon et al. 1992) and Normalized Difference
Vegetation Index (NDVI) (Rouse et al. 1974) have been
demonstrated in prior studies to accurately characterize
photosynthesis and chlorophyll fluorescence (Carter 1998,
Peñuelas et al. 2011, Sparks et al. 2016, Wong et al. 2019).
Spectral indices including the Char Soil Index (CSI) (Smith
et al. 2005), Mid-infrared Burn Index (MIRBI) (Trigg and Flasse
2001), Normalized Burn Ratio (NBR) (Key and Benson 2006),
the Relativized differenced Normalized Burn Ratio (RdNBR)
(Miller and Thode 2007), SWIR2-NIR band ratio (Kushla and
Ripple 1998) and SWIR2-SWIR1 band ratio (Epting et al. 2005)
have been shown to accurately quantify live canopy cover
change and mortality in prior studies (Miller and Thode 2007,
Sparks et al. 2016, McCarley et al. 2017, Furniss et al. 2020).
Differenced formulations were calculated for all spectral indices
to capture changes pre- to post-fire and were calculated as the
difference between the pre-fire spectral index value and post-
fire spectral index value. These formulations are noted with a ‘d’
before the spectral index abbreviation.

Data analysis

Relationships between FRE or each spectral index and tree
physiology or mortality metrics were assessed using regres-
sion modeling, where physiology metrics (Amax, gs, relative
A, Fv/Fm) were the response variables, and FRE or spectral
indices (Table 1) were the predictor variables. Relationships
were assessed separately for each species, post-fire sam-
pling date (28 and 56 days post-fire) and scale (individual
and stand). Regression modeling was conducted using the
‘DoseFinding’ (Bornkamp et al. 2022) and ‘nlme’ (Pinheiro
and Bates 2022) R packages in R statistical software (R Core
Team 2022). Prior studies have indicated that the form of the
relationship between FRE or spectral indices and tree physiology
and mortality can vary. For example, Sparks et al. (2016) and
Smith et al. (2017) observed a linear relationship between

FRE or spectral indices and net photosynthesis in P. contorta
(Douglas) and L. occidentalis (Nutt.) saplings. Others have
observed sigmoidal relationships between FRE and mortality in
P. contorta (Douglas) and Pinus ponderosa (Dougl. ex Laws)
saplings (Smith et al. 2017, Steady et al. 2019). Given this vari-
ability, we assessed several regression models for each predictor
and response variable pair, and the best fit for models that were
significant (α = 0.05) was determined by the lowest Akaike
Information Criterion (AIC) value (Akaike 1974). For each best
fit model, the residual standard error (SE) and the coefficient of
determination (r2) for linear models were computed and used to
evaluate the relationship ‘goodness of fit’. Assessed regression
models are shown in Table 2.

The results from this study were included in a conifer cross-
comparison using Amax and mortality data from other published
dose–response studies. The included studies used similarly
sized and aged saplings (∼2–3 years old) and a similar
range of FRE doses. Selected studies assessed dose–response
relationships for the following species: P. ponderosa (Dougl. ex
Laws.) (Steady et al. 2019), P. contorta (Douglas) (Smith et al.
2017) and L. occidentalis (Nutt.) (Smith et al. 2017).

Results

Physiology and mortality dose–response

Amax, relative A and gs for both species generally decreased with
increasing FRE at 28 and 56 days post-fire (Figures 2a–c and
3a–c). The Sigmoid Emax regression model provided the best
fit (lowest AIC) for dose–response relationships between FRE
and Amax at 28 days post-fire for P. monticola (P < 0.001, AIC:
43.5) and P. menziesii (P < 0.001, AIC: 67.8) (Tables S1 and
S5 available as Supplementary data at Tree Physiology Online)
and at 56 days post-fire for P. monticola (P < 0.001, AIC:
63.5) (Tables S2 and S6 available as Supplementary data at
Tree Physiology Online). Relationships between FRE and relative
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Table 1. Spectral index formulation and associated reference.

Spectral Index Formula Reference

CCI (ρ531 – ρ645)/(ρ531 + ρ645) Gamon et al. 2016
Differenced CCI (dCCI) (CCIpre-fire – CCIpost-fire)
CSI ρNIR/ρSWIR1 Smith et al. 2005
Differenced CSI (dCSI) (CSIpre-fire – CSIpost-fire)
MIRBI 10 × ρSWIR2-9.8 × ρSWIR1 + 2 Trigg and Flasse 2001
Differenced MIRBI (dMIRBI) (MIRBIpre-fire – MIRBIpost-fire)
NDVI (ρNIR – ρred)/(ρNIR + ρred) Rouse et al. 1974
Differenced NDVI (dNDVI) (NDVIpre-fire – NDVIpost-fire)
NBR (ρNIR – ρSWIR2)/(ρNIR + ρSWIR2) Key and Benson 2006
Differenced NBR (dNBR) (NBRpre-fire – NBRpost-fire)
Relativized differenced NBR dNBR/(|NBRpre-fire|/1000)0.5 Miller and Thode 2007
PRI (ρ531 – ρ570)/(ρ531 + ρ570) Gamon et al. 1992
Differenced PRI (dPRI) (PRIpre-fire – PRIpost-fire)
SWIR2-NIR band ratio (SW2NIR) ρSWIR2/ρNIR Kushla and Ripple 1998
Differenced SW2NIR (dSW2NIR) (SW2NIRpre-fire – SW2NIRpost-fire)
SWIR2-SWIR1 band ratio (SW2SW1) ρSWIR2/ρSWIR1 Epting et al. 2005
Differenced SW2SW1 (dSW2SW1) (SW2SW1pre-fire – SW2SW1post-fire)

ρλ denotes reflectance in spectral band λ. ρred = red reflectance, ρNIR = near infrared reflectance, ρSWIR = short-wave infrared reflectance.

Table 2. Regression model formulae used in the analysis of relation-
ships between FRE or each spectral index and tree physiology or
mortality.

Regression model Formula

Linear y = mx + b
Quadratic y = b + β1x + β2x2

Emax y = E0 + Emax
x

ED50+x

Sigmoid Emax y = E0 + Emax
xh

EDh
50+xh

Model coefficients are as follows: m = slope, b = y-intercept,
βx = quadratic fit coefficients, E0 = left asymptote parameter for
sigmoidal fits, Emax = asymptotic maximum effect, ED50 = value
giving half of the asymptotic maximum effect, h = hill parameter that
determines the steepness of the model at ED50.

A were similar to FRE–Amax relationships, although models
with the best fit differed (Figures 2b and 3b). Dose–response
relationships between FRE and gs varied between the species.
At 28 and 56 days post-fire, quadratic (P < 0.001, AIC: −83.7)
and linear (P < 0.001, AIC: −69.6) models provided the
best fit for the FRE-gs relationship in P. monticola, respectively
(Figure 2c; Tables S1 and S2, S5 and S6 available as Supple-
mentary data at Tree Physiology Online). In contrast, Sigmoid
Emax regression models provided the best fit for the FRE–gs

relationship in P. menziesii at 28 days (P < 0.001, AIC: −62.8)
and 56 days (P < 0.001, AIC: −55.7) post-fire (Figure 3c;
Tables S1, S2, S5 and S6 available as Supplementary data at
Tree Physiology Online).

Chlorophyll fluorescence (Fv/Fm) dose–response relation-
ships differed between the two species. Burned P. monticola
generally maintained higher Fv/Fm values at 28 days post-fire
compared with P. menziesii (Figures 2d and 3d). Pinus monticola

displayed a sigmoidal decrease in Fv/Fm with increasing FRE
(Figure 2d), with Sigmoid Emax models providing the best fit
at 28 days (P < 0.001, AIC: 8.4) and 56 days (P < 0.001,
AIC: −3.3) post-fire (Tables S1, S2, S5 and S6 available as
Supplementary data at Tree Physiology Online). In contrast,
P. menziesii displayed decreases in Fv/Fm at all FRE doses
(Figure 3d), with linear and Sigmoid Emax models providing
the best fit at 28 days (P < 0.001, AIC: −0.3) and 56 days
(P < 0.001, AIC: −8.1) post-fire (Tables S1, S2, S5 and S6
available as Supplementary data at Tree Physiology Online).

Mortality increased with increasing FRE dose for both species
(Figures 2e and 3e). Sigmoid Emax regression models pro-
vided the best fit (lowest AIC) for dose–response relationships
between FRE and mortality for P. monticola and P. menziesii
at 28 days post-fire (P < 0.001, AIC: 22.8 and P < 0.001,
AIC: 22.2, respectively) and at 56 days post-fire (P < 0.001,
AIC: 27.7 and P < 0.001, AIC: 10.4, respectively) (Tables S1
and S2, S5 and S6 available as Supplementary data at Tree
Physiology Online). The lowest observed adverse effect level
for mortality was observed to be 0.4 MJ m−2 for P. menziesii
and 0.6 MJ m−2 for P. monticola. Delayed mortality resulted
in a leftward shift of the relationship fit from 28 days post-
fire to 56 days post-fire for both P. monticola and P. menziesii
(Figures 2e and 3e).

Spectral characterization of physiological performance and
mortality

Figure 4 displays the regression relationships between indi-
vidual sapling physiological metrics and spectral indices that
yielded the lowest AIC value, and therefore, represent the best
fitting predictive model among the four models that were tested.
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Figure 2. Dose–response relationships between FRE and P. monticola physiology or mortality at 28 days post-fire (circles) and 56 days post-fire
(diamonds). Panels show dose–response relationships between FRE dose and response variables: (a) light-saturated net photosynthesis (Amax), (b)
relative net photosynthesis, (c) stomatal conductance to water vapor (gs), (d) chlorophyll fluorescence (Fv/Fm) and (e) mortality. Mean values ± SE
are shown in panels (a) to (d). Colors represent FRE doses: blue = 0 MJ m−2, green = 0.4 MJ m−2, yellow = 0.6 MJ m−2, orange = 0.8 MJ m−2

and red = 1 MJ m−2. The regression model fits with the lowest AIC are also displayed for data at 28 days post-fire (solid line) and 56 days post-fire
(dotted line). The residual SE and coefficient of determination (r2) for linear models are also reported. SE for panel (a) is 0.79 and 1.5 for data at
28 and 56 days post-fire, respectively.

For both species, the best fit regression models were linear mod-
els utilizing the PRI and CCI spectral indices for predicting Amax

and relative A (Figure 4; Tables S1 and S2 available as Supple-
mentary data at Tree Physiology Online). Generally, higher values
of PRI and CCI corresponded with higher values of Amax and
relative A (Figure 4). For P. monticola, PRI was the best predictor
of Amax (P < 0.001, AIC: 57.1) and relative A (P < 0.001, AIC:
143.2) at 28 days post-fire, and CCI was the best predictor
of Amax (P < 0.001, AIC: 57.6) and relative A (P < 0.001,
AIC: 136.6) at 56 days post-fire (Tables S1, S2, S7 and S8
available as Supplementary data at Tree Physiology Online).
Spectral indices dPRI and dCCI provided the next best fits for

prediction of Amax (P < 0.001, AIC: 63.4 and P < 0.001,
AIC: 65.5, respectively) and relative A at 28 days post-fire
(P < 0.001, AIC: 148.2 and P < 0.001, AIC: 148.2, respec-
tively) (Tables S7 and S8 available as Supplementary data at
Tree Physiology Online). Similarly, spectral indices PRI and dCCI
provided the next best fits for prediction of Amax (P < 0.001,
AIC: 58.8 and P < 0.001, AIC: 58.6, respectively) and relative
A at 56 days post-fire (P < 0.001, AIC: 138.9 and P < 0.001,
AIC: 136.7, respectively) (Tables S7 and S8 available as Sup-
plementary data at Tree Physiology Online). For P. menziesii, PRI
was the best predictor of Amax (P < 0.001, AIC: 37.0) and
relative A (P < 0.01, AIC: 95.7) at 28 days post-fire, and was
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Figure 3. Dose–response relationships between FRE and P. menziesii physiology or mortality at 28 days post-fire (circles) and 56 days post-fire
(diamonds). Panels show dose–response relationships between FRE dose and response variables: (a) light-saturated net photosynthesis (Amax), (b)
relative net photosynthesis, (c) stomatal conductance to water vapor (gs), (d) chlorophyll fluorescence (Fv/Fm), and (e) mortality. Mean values ± SE
are shown in panels (a) to (d). Colors represent FRE doses: blue = 0 MJ m−2, green = 0.4 MJ m−2, yellow = 0.6 MJ m−2, orange = 0.8 MJ m−2

and red = 1 MJ m−2. The regression model fits with the lowest AIC are also displayed for data at 28 days post-fire (solid line) and 56 days post-fire
(dotted line). Instances where none of the regression models were significant are denoted as (n.s.). The residual SE and coefficient of determination
(r2) for linear models are also reported. SE for panel (a) is 1.94 for data at 28 days post-fire.

also the best predictor of Amax (P < 0.001, AIC: 45.5) and rel-
ative A (P < 0.01, AIC: 101.9) at 56 days post-fire (Figure 4b
and d; Tables S1, S2, S7 and S8 available as Supplementary
data at Tree Physiology Online). Spectral indices dPRI and NDVI
provided the next best fits at 28 days post-fire for prediction of
Amax (P < 0.001, AIC: 42.2 and P < 0.001, AIC: 43.8, respec-
tively) and relative A (P < 0.001, AIC: 99.7 and P < 0.001,
AIC: 101.7, respectively) (Tables S7 and S8 available as Sup-
plementary data at Tree Physiology Online). At 56 days post-
fire, spectral indices dPRI and CCI provided the next best fits
for prediction of Amax (P < 0.001, AIC: 46.9 and P < 0.001,
AIC: 49.3, respectively) and relative A (P < 0.001, AIC: 103.6

and P < 0.001, AIC: 106.1, respectively) (Tables S7 and S8
available as Supplementary data at Tree Physiology Online).

Regression relationships between Fv/Fm and spectral indices
with the lowest AIC values are shown in Figure 4e and f. All
of the best fit models used a linear fit for both species. For
P. monticola, PRI was the best predictor of Fv/Fm at 28 days
post-fire (P < 0.001, AIC: −56.9) and at 56 days post-fire
(P < 0.01, AIC: −32.5) (Figure 4e; Tables S1, S2, S7 and
S8 available as Supplementary data at Tree Physiology Online).
Spectral indices dPRI and dMIRBI provided the next best fits
for prediction of Fv/Fm at 28 days post-fire (P < 0.001,
AIC: −55.4 and P < 0.001, AIC: −54.9, respectively), and

Tree Physiology Volume 43, 2023

D
ow

nloaded from
 https://academ

ic.oup.com
/treephys/article/43/8/1365/7127957 by Texas Tech U

niversity Libraries user on 20 August 2024

https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data
https://academic.oup.com/treephys/article-lookup/doi/10.1093/treephys/tpad051#supplementary-data


Fire intensity impacts 1373

Figure 4. Relationships between spectral indices derived from individual sapling spectral reflectance measurements and (a, b) light-saturated net
photosynthesis (Amax), (c, d) relative photosynthesis and (e, f) chlorophyll fluorescence (Fv/Fm) at 28 days post-fire (circles) and 56 days post-fire
(diamonds). Each data point represents the average of three spectral scans with colors representing FRE doses: blue = 0 MJ m−2, green = 0.4 MJ
m−2, yellow = 0.6 MJ m−2, orange = 0.8 MJ m−2 and red = 1 MJ m−2. The regression model fits with the lowest AIC are displayed on each pane.
The residual SE and coefficient of determination (r2) for linear models are also reported. The AIC, r2 and SE for panel (a) are 57.1, 0.81 and 1.88
for data at 28 days and 58.5, 0.61 and 1.98 for data at 56 days post-fire, respectively.

spectral indices dPRI and MIRBI provided the next best fits
for prediction of Fv/Fm at 56 days post-fire (P < 0.001, AIC:
−32.4 and P < 0.001, AIC: −32.3, respectively) (Tables S7
and S8 available as Supplementary data at Tree Physiology
Online). For P. menziesii, PRI was the best predictor of Fv/Fm

at 28 days post-fire (P < 0.001, AIC: −36.8), and dPRI was
the best predictor of Fv/Fm at 56 days post-fire (P < 0.01,
AIC: −12.3) (Figure 4f; Tables S1, S2, S7 and S8 available as

Supplementary data at Tree Physiology Online). Spectral indices
dPRI and NDVI provided the next best fits for prediction of Fv/Fm

at 28 days post-fire (P < 0.001, AIC: −32.0 and P < 0.05,
AIC: −27.1, respectively), and spectral indices CCI and dCCI
provided the next best fits for prediction of Fv/Fm at 56 days
post-fire (P < 0.05, AIC: −10.8 and P < 0.001, AIC: −8.9,
respectively) (Tables S7 and S8 available as Supplementary
data at Tree Physiology Online).
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Figure 5. Relationships between spectral indices derived from sapling stand spectral reflectance measurements and stand average (a, b) light-saturated
net photosynthesis (Amax), (c, d) relative A and (e, f) chlorophyll fluorescence (Fv/Fm) at 28 days post-fire (circles) and 56 days post-fire (diamonds).
Each data point represents the average of three spectral scans with colors representing FRE doses: blue = 0 MJ m−2, green = 0.4 MJ m−2, yellow
= 0.6 MJ m−2, orange = 0.8 MJ m−2 and red = 1 MJ m−2. The regression model fit with the lowest AIC and SE is displayed on each pane. Instances
where none of the regression models were significant are denoted as (n.s.). The residual SE and coefficient of determination (r2) for linear models
are also reported.

Figure 5a and b displays the sapling stand relationships
between stand Amax average and spectral indices. For P. monti-
cola, the regression models with the best fit utilized CSI for pre-
dicting stand Amax average at 28 days post-fire (P < 0.001, AIC:
−14.1) (Figure 5a) and RdNBR for predicting stand Amax aver-
age at 56 days post-fire (P < 0.001, AIC: −34.1) (Tables S3,
S4, S9 and S10 available as Supplementary data at Tree Phys-
iology Online). Spectral indices RdNBR and dNBR provided
the next best fits for prediction of stand Amax average at

28 days post-fire (P < 0.001, AIC: −6.4 and P < 0.001,
AIC: −6.4, respectively), and dNBR and NBR provided the next
best fits for prediction of stand Amax average at 56 days post-
fire (P < 0.001, AIC: −30.7 and P < 0.001, AIC: −28.9,
respectively) (Tables S9 and S10 available as Supplementary
data at Tree Physiology Online). In terms of predicting relative A,
the regression models with the best fit utilized dNDVI at 28 days
post-fire (P < 0.001, AIC: −13.7) (Figure 5b) and CSI at
56 days post-fire (P < 0.001, AIC: −10.6) (Tables S3, S4, S9
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Figure 6. Relationships between spectral indices derived from sapling stand spectral reflectance measurements and mortality at 28 days post-fire
(circles) and 56 days post-fire (diamonds). Each data point represents the average of three spectral scans with colors representing FRE doses: blue
= 0 MJ m−2, green = 0.4 MJ m−2, yellow = 0.6 MJ m−2, orange = 0.8 MJ m−2and red = 1 MJ m−2. The regression model fit with the lowest AIC
and SE is also displayed on each pane. The residual SE and coefficient of determination (r2) for linear models are also reported.

and S10 available as Supplementary data at Tree Physiology
Online). Spectral indices CSI and NDVI provided the next best
fits for prediction of stand relative A at 28 days post-fire
(P < 0.001, AIC: −6.9 and P < 0.001, AIC: −5.2, respectively),
and SW2SW1 and NDVI provided the next best fits for prediction
of relative A at 56 days post-fire (P < 0.001, AIC: −7.8
and P < 0.001, AIC: −2.6, respectively) (Tables S9 and S10
available as Supplementary data at Tree Physiology Online).
None of the regression models characterizing the relationship
between spectral indices and stand average Fv/Fm was signifi-
cant at 28 or 56 days post-fire (Tables S9 and S10 available as
Supplementary data at Tree Physiology Online). For P. menziesii,
the regression models with the best fit utilized CSI for predicting
stand Amax average at 56 days post-fire (P < 0.001, AIC: 14.9)
(Figure 5b; Tables S4 and S10 available as Supplementary data
at Tree Physiology Online). None of the regression models char-
acterizing the relationship between spectral indices and stand
Amax average was significant at 28 days post-fire (Tables S9
and S10 available as Supplementary data at Tree Physiology
Online). Spectral indices dCSI and dNDVI provided the next best
fits for prediction of stand Amax average at 56 days post-fire
(P < 0.001, AIC: 15.4 and P < 0.001, AIC: 15.9, respectively)
(Table S10 available as Supplementary data at Tree Physiology
Online). Spectral index CSI provided the best fit for prediction
of stand relative A and Fv/Fm at 56 days post-fire (P < 0.01,
AIC: 1.7 and P < 0.05, AIC: −9.6, respectively) (Figure 5d and
f; Tables S4 and S10 available as Supplementary data at Tree
Physiology Online). Spectral indices NDVI and NBR provided the
next best fits for prediction of relative A at 56 days post-fire
(P < 0.001, AIC: 3.6 and P < 0.001, AIC: 4.8, respectively).
Spectral indices dNDVI and NDVI provided the next best fits
for prediction of Fv/Fm at 56 days post-fire (P < 0.001, AIC:
−7.5 and P < 0.001, AIC: −7.2, respectively) (Table S10,
available as Supplementary data at Tree Physiology Online).

None of the regression models characterizing the relationship
between spectral indices and stand relative A and Fv/Fm was
significant at 28 days post-fire (Tables S9 and S10 available as
Supplementary data at Tree Physiology Online).

Regression relationships between stand mortality and spec-
tral indices that have the lowest AIC values are shown in
Figure 6a and b. For P. monticola, the regression model with
the best fit utilized dNBR for predicting mortality at 28 days
post-fire (P < 0.001, AIC: 32.8) and RdNBR at 56 days post-
fire (P < 0.001, AIC: 24.7) (Figure 6a; Tables S3, S4, S9
and S10 available as Supplementary data at Tree Physiology
Online). Spectral indices RdNBR and SWIR2-SWIR1 band ratio
provided the next best fits at 28 days post-fire for prediction of
mortality (P < 0.001, AIC: 34.3 and P < 0.001, AIC: 38.3,
respectively), and dNBR and CSI provided the next best fits
at 56 days post-fire for prediction of mortality (P < 0.001,
AIC: 27.6 and P < 0.001, AIC: 28.4, respectively) (Tables S9
and S10 available as Supplementary data at Tree Physiology
Online). For P. menziesii, the regression model with the best
fit utilized dCSI for prediction of mortality at 28 days post-fire
(P < 0.001, AIC: 43.4) and at 56 days post-fire (P < 0.001,
AIC: 46.2) (Figure 6b; Tables S3, S4, S9 and S10 available as
Supplementary data at Tree Physiology Online). Spectral indices
CSI and SWIR2-NIR band ratio provided the next best fits for
prediction of mortality at 28 days post-fire (P < 0.001, AIC:
45.1 and P < 0.001, AIC: 47.2, respectively) and at 56 days
post-fire (P < 0.001, AIC: 47.9 and P < 0.001, AIC: 47.9,
respectively) (Tables S9 and S10 available as Supplementary
data at Tree Physiology Online).

Discussion

This study used a dose–response approach to assess fire
intensity impacts on short-term physiological performance in
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P. monticola and P. menziesii saplings. The hypothesis that
increasing fire intensity results in decreased physiological per-
formance and increased mortality was confirmed, although large
differences in physiological response were observed between
the two species. Pinus monticola had lower mortality and less
change in physiological performance at lower fire intensities
compared with P. menziesii, indicating a higher fire resistance
of P. monticola at this life stage. Likewise, the hypothesis
that changes in physiological performance could be detected
using spectral indices derived from spectral reflectance at
the individual and stand scales was also supported, although
relationships were stronger at the individual level than for sapling
stands. When considered with prior studies (e.g., Sparks et al.
2016), these findings indicate that spectral reflectance may
provide accurate information about physiological performance
(Smith et al. 2016, Varner et al. 2021). This is important as it
suggests that assessments of fire effects in research and forest
management can move beyond current methods that rely on
subjective ocular estimates of foliage discoloration and mortality
that are difficult to assess at stand and landscape scales (Hood
et al. 2018a, Varner et al. 2021).

Sapling responses to FRE dose

There were several key differences between the two species
in terms of physiological performance response to FRE dose.
Generally, P. monticola saplings maintained greater physiological
performance after higher FRE doses than P. menziesii saplings.
Some P. monticola saplings maintained positive photosynthetic
rates 28 days after the highest FRE doses, whereas, P. menziesii
saplings had near-zero photosynthesis rates at FRE doses
above 0.6 MJ m−2 (Figures 2a and 3a). Likewise, chlorophyll
fluorescence was maintained at higher FRE doses in P. monticola
saplings at 28 days post-fire versus P. menziesii saplings,
indicating either there was less damage to the photosynthetic
apparatus or that the saplings enacted repairs following the fires
(Figures 2d and 3d). This result in P. monticola is similar to
the results observed for P. contorta var. latifolia (Smith et al.
2017), where chlorophyll fluorescence in saplings rapidly fell
following intense fires (FRE = 1.2 MJ m−2) but then recovered
and was maintained for 2 weeks prior to a significant reduction
that led to sapling mortality. Together, these results suggest that
these two Pinus species prioritize resource allocation to repair
the photosynthetic apparatus. This is an interesting result given
that these two Pinus species are not closely related (Gernandt
et al. 2005).

Pinus monticola also exhibited larger reductions in Amax

at lower FRE doses, compared with chlorophyll fluorescence
(Figure 2). It is likely that fire-affected saplings closed stom-
ata quickly after the fire treatments to reduce water loss,
as evidenced by the decline in gs in Figure 2c. As photo-
synthesis relies on the adequate conductance of water and
carbon dioxide, stomatal closure would result in the immediate

reduction of photosynthesis. In comparison, the downregulation
of photosynthesis, or the breakdown of proteins and pigments
in the light harvesting and electron transport that is assessed by
chlorophyll fluorescence, is a slower process that may explain
why Fv/Fm did not decrease substantially until 56 days post-
fire. Prolonged reductions in gs could result from decreases
in water conductivity due to heat-induced embolism in the
xylem (Michaletz et al. 2012, West et al. 2016, Bär et al.
2018). However, studies that use actual fires and not fire
proxies have not found evidence of reduced hydraulic con-
ductivity in other similarly aged conifer saplings subjected to
surface fires of similar intensity (Partelli-Feltrin et al. 2021,
2023). Instead, extensive damage to the phloem was observed
and saplings saw reduced nonstructural carbohydrates (sugars
and starches) in the stem and roots (Partelli-Feltrin et al.
2023). If the same phloem dysfunction occurred in our study,
accumulation of starch in chloroplasts could have also caused
downregulation of photosynthesis, through feedback inhibition
(Kozlowski and Pallardy 1997, Myers et al. 1999). This could
occur with no reduction in water supplied to the foliage, while
capacity to conduct photosynthesis assessed by fluorescence
would be unaffected. Other potential factors driving reduced
photosynthesis include reduced conductance of water, carbon
dioxide and other nutrients within and among cells due to
heat-induced damage to leaf structure. Internal leaf structure
can strongly affect carbon dioxide conductance (Flexas et al.
2012), thus any structural change, such as heat-induced cellular
deformation (Michaletz et al. 2012), could potentially reduce
photosynthesis.

Differences in physiological performance between species
subjected to fires of the same intensity may also be attributed to
differences in specific leaf area or the ratio of projected leaf area
to leaf mass. Objects with higher surface area to volume ratios
have greater heat transfer rates and can heat up more quickly
(Finney et al. 2015). Likewise, foliage with a higher specific leaf
area may absorb heat such that levels capable of damaging the
photosynthetic apparatus are met more quickly than in foliage
with lower specific leaf area (Knight and Ackerly 2003). A
cross-comparison of FRE–Amax dose–response relationships in
conifer saplings also provides some evidence for this hypothesis
(Figure 7a). Specifically, relationships with steeper declines in
photosynthesis at lower FRE doses are apparent in some species
with higher specific leaf areas (P. monticola and L. occidentalis)
compared with those with lower specific leaf areas (P. ponderosa
and P. contorta) (Figure 7a).

Foliage structure and arrangement in the crown may also
play a role in fire-induced damage and changes in physiological
performance. Many Pinus species tend to have ‘clumps’ or ‘tufts’
of foliage surrounding terminal branch buds (Fournier et al.
1996, Thies et al. 2005, Keeley 2012). In this study, needles
in the inner positions of these tufts tended to survive and have
higher Amax and gs rates and chlorophyll fluorescence. On the
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Figure 7. Dose–response relationships between FRE and Amax (a) and FRE and mortality (b) at 28 days post-fire for 2- to 3-year-old saplings
representing three different Pinus species, Pseudotsuga menziesii and Larix occidentalis. Error bars in (a) represent SE (n = 5). Pinus ponderosa
(Dougl. ex Laws.) data are from Steady et al. (2019) and Pinus contorta (Douglas) and L. occidentalis (Nutt.) data are from Smith et al. (2017).

contrary, P. menziesii needles do not have this tuft structure,
and saplings could have sustained more consistent heat-induced
damage across the crown, leading to lower photosynthesis
rates and chlorophyll fluorescence. Additionally, P. menziesii
terminal branch buds are much smaller and more exposed
than P. monticola buds and likely sustained more heat-induced
damage during the fire treatments. Similar to foliage, smaller
buds can heat up to lethal temperatures more quickly than
larger buds (Michaletz and Johnson 2006) and could lead
to higher bud necrosis in a tree crown during the sporadic,
short-duration heat pulses experienced in fires (Kremens et al.
2010). This is important as partial or complete bud necrosis
reduces a tree’s ability to produce new foliage and would require
adequate nonstructural carbohydrate stores and mobilization for
maintenance respiration, as well as osmotic and defense needs
(McDowell et al. 2011, Hood et al. 2018a).

The effects observed for these saplings may not apply to
older, larger trees. Fire impacts on tree physiology and mortality
depend largely on tree size (McDowell et al. 2018), with smaller
trees generally being most vulnerable to fire. Fire-resistant traits
in older and larger P. monticola and P. menziesii have had
time to mature and include thick bark that insulates the stem
from heat, high crowns that reduce flame contact with heat-
sensitive foliage and a large non-structural carbohydrate reserve
allocated to post-fire recovery and maintenance (Starker 1934,
Vanderweide and Hartnett 2011, He et al. 2012, Keeley 2012).

Despite these differences between mature trees and saplings,
knowledge of how saplings respond to fire is critically needed.
In the western United States, prescribed fires are used for
reducing surface fuel load, tree density and crown fire hazard
(Battaglia et al. 2009), and greater usage is expected in forest
management plans (Kolden 2019, Hiers et al. 2020, Prichard
et al. 2021). Dose–response curves like those produced in
this study, and other studies (Figure 7), are useful to esti-
mate the fire intensity needed to reduce sapling mortality for
desired species and/or increase mortality of undesired species

(Smith et al. 2017, Steady et al. 2019). Relations of this form
are also widely used within fire-enabled Earth system models,
potentially enabling improvements to predicting dynamic vege-
tation responses to fire and how they may impact the carbon
cycle (Hanan et al. 2022, Shuman et al. 2022).

Physiological performance quantification using spectral
indices

The quantification of physiological performance in these two
species using common spectral indices is promising and builds
off prior research that has shown similar results in different
species. In this study, spectral indices based on wavelengths
mainly sensitive to foliar pigments (CCI, PRI, NDVI and their
differenced formulations) were the best predictors of photo-
synthetic performance (Figure 4; Table S1 and S2 available as
Supplementary data at Tree Physiology Online). Prior studies
have found that spectral indices such as CCI and PRI that utilize
wavelengths sensitive to carotenoid leaf pigments are more
accurate proxies of photosynthesis than are indices such as
NDVI which are sensitive to chlorophyll (Gamon et al. 2016,
Wong et al. 2019). This difference is largely because carotenoid
pigments, given their photoprotective and antioxidant roles,
increase in foliage when plants are stressed (Gamon et al.
2016), while chlorophyll levels can remain stable during similar
levels of stress (Wong et al. 2019). This means that conifers
can have periodic reductions in photosynthetic rate due to
changes in environmental conditions (e.g., water stress), while
light absorption remains constant (Grace et al. 2007, Peñuelas
et al. 2011). However, other studies have found that NDVI can
be an accurate proxy for post-fire photosynthetic performance
because the NIR wavelengths it uses are sensitive to leaf
structural changes that occur with increasing fire intensity
(Sparks et al. 2016). Overall, changes in foliar pigment com-
position and damage to internal leaf structure after fire remain
key knowledge gaps in assessing fire impacts on physiological
performance.
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The ability to accurately quantify physiological performance
using spectral indices is also promising because repeated obser-
vations could be used to identify early indicators of tree mortal-
ity (Sperry and Love 2015, Hood et al. 2018a). For example,
declining trends in spectral indices sensitive to live forest canopy
cover have been used to identify and map forest canopy cover
loss due to stressors such as drought, insects and disease
(Cohen et al. 2016, Huo et al. 2019, Moreno-Fernandez et al.
2021). Metrics derived from time series data, such as the slope,
variability and maximum change, could be used to parameterize
predictive mortality models (Huo et al. 2019). Individual tree
crown mortality classification has been demonstrated using
single-date high resolution multispectral imagery acquired via
unmanned aerial vehicles (UAVs) (Bergmüller and Vanderwel
2022). Repeated observations using similar platforms (e.g.,
UAVs, airborne sensors) could provide the necessary time series
data for predicting tree death.

In general, individual sapling measurements provided more
accurate quantification of physiological performance than
sapling stand measurements. At the stand scale, spectral indices
utilizing NIR wavelengths (e.g., CSI, NDVI, SWIR2NIR band ratio)
typically captured very high physiological performance and very
low physiological performance. This could be because live crown
area, when viewed at nadir, was reduced to similar proportions
across the dose groups, especially in groups exposed to FRE
doses higher than 0.4 MJ m−2 (Figure 1). Near infrared (NIR)
reflectance is highly sensitive to leaf structure (Ollinger 2011),
where leaves exposed to lower levels of heat reflect more NIR
than leaves exposed to high doses of heat (Sparks et al. 2016),
possibly due to intra-leaf cellular deformation (Michaletz et al.
2012) and dehydration (Sinclair et al. 1973). Additionally,
background reflectance from sapling branches, soil and char
may have obscured any reflectance signal from live foliage,
except in cases where live foliage dominated the sensor field-
of-view. These results indicate that physiological performance
is likely best assessed at the individual tree crown level to
minimize confounding influences. However, given the low stand
measurement sample size in this study, future work should
explore stand-level characterization using a larger sample size.
High-resolution imagery (e.g., < 2 m spatial resolution) and
multi-spectral LiDAR collected from airplanes and UAVs may
provide adequate data for individual tree crown characterization,
given prior studies have used such data for foliage chemical
content estimation, species identification and crown level
mortality (Asner et al. 2015, Budei et al. 2018, Bergmüller
and Vanderwel 2022).

The accurate characterization of stand-level mortality using
spectral indices indicates that high-to-moderate spatial resolu-
tion imagery may provide adequate mortality estimation at stand
to landscape scales. The best performing indices incorporated
NIR and SWIR wavelengths (e.g., dNBR, RdNBR, CSI, SW2SW1),
which has also been observed in studies that quantified post-fire

tree mortality using spectral indices derived from Landsat data
(Whitman et al. 2018, Harvey et al. 2019, Furniss et al. 2020).
Concurrent reductions in NIR reflectance and increases in SWIR
reflectance have been observed in tree foliage exposed to higher
doses of heat (Sparks et al. 2016), likely resulting from changes
in leaf structure and reductions in leaf water content in damaged
and dead foliage (Ollinger 2011). The accuracy of indices that
use NIR and SWIR wavelengths, along with the sigmoidal form
of the relationships between spectral indices and tree mortality,
has been observed elsewhere, including in studies that use
Landsat-derived spectral indices (Furniss et al. 2020).

Conifer sapling cross-comparison

A cross-comparison of the FRE to Amax/mortality dose–response
curves in saplings of similar age and size from different studies
to date are shown in Figure 7. Saplings are generally considered
to represent a worst-case scenario in terms of how much fire
intensity dose is needed to cause mortality, as they have not
had enough time to develop fire-resistant features such as thick
bark and high crowns (Smith et al. 2017, 2018). It is likely
that bark thickness for the saplings in Figure 7 was similar,
and differences in the dose–response curves are likely owing to
differences in crown structure and damage (Engber and Varner
2012). These combined results however raise the question of
whether the common 100% survival for Pinus species at FRE
dosages of 0.4 MJ m−2 (Figure 7b) could indicate the presence
of a functional trait associated across the Pinus genus to fully
survive low intensity fires common in Pinus-dominated stands
(Hudak et al. 2016, Sparks et al. 2017). Above these survival
thresholds, each of the studied Pinus species exhibits very
similar sigmoid responses, with complete mortality generally
occurring around 1 MJ m−2. As noted in Steady et al. (2019),
the thresholds of survival and mortality will generally shift to
the right with increasing age and size of the trees, and Smith
et al. (2017) hypothesized that stressors may lead to the
thresholds shifting to the left. However, we hypothesize that
even if the curves shift, the shape of the curves may remain the
same and that size/age-based and stressor correction factors
could be created to translate these curves into ecosystem and
Earth-system models.

Conclusions

Understanding how fire impacts tree physiology and mortality
is important for informing fire effects modeling and natural
resource management. However, the majority of fire effects
studies do not quantify the heat flux that a tree receives during
a fire, limiting their ability to identify mechanisms of tree injury
and mortality and/or predict fire effects. This study advances
our understanding of how fire affects tree physiology and
mortality by utilizing a novel dose–response approach to assess
physiological performance in saplings subjected to surface fires
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of varying intensity. Our findings demonstrate the higher fire
resistance of P. monticola compared with P. menziesii at this life
stage, given the ability of P. monticola saplings to maintain higher
photosynthesis and chlorophyll fluorescence at higher doses,
and lower mortality at lower fire intensity doses. The assessment
of physiological performance using remotely sensed spectral
reflectance advances the fire effects quantification status quo
beyond subjective ocular estimates of dead and dying foliage.
Results show that common vegetation indices can accurately
characterize physiological performance at the individual crown
scale (e.g., PRI, CCI, NDVI), and accurately characterize mortality
at the stand scale (e.g., NBR, CSI, RdNBR). These results suggest
that current high spatial resolution sensors on airborne and UAV
platforms could utilize such spectral indices for tree crown-
level assessments. Furthermore, repeated observations may
help identify early indicators of tree death, such as decreasing
trends or high variability in spectral index values over time.

The conifer sapling cross-comparison showed consistent high
survivorship of Pinus species at low FRE doses, which is
consistent with the close evolutionary relationship between fire
and the radiation of the genus (He et al. 2012). However,
detailed dose–response experiments have only been conducted
on a handful of species. Clearly, prior to a definitive conclusion
regarding a potential Pinus functional trait, more research is
warranted on a larger selection of pines, including species with
documented sensitivity to low levels of fire intensity (e.g., Pinus
albicaulis, Pinus contorta var. murrayana, Pinus flexilis; Cope
1993, Johnson 2001, Fryer 2002). It is unknown how con-
sistent such patterns are across pines or conifers more broadly,
let alone how such patterns compare across angiosperm trees.
Ultimately, the conifer cross-comparison highlights the utility of
using dose–response experiments not only for understanding
physiology and mortality responses to fire, but also as a guide for
natural resource managers seeking to reduce or increase sapling
mortality for desired or undesired species.
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